

Virginia Evans Jenny Dooley Joshua Kern

MECHANICAL ENGINEERING

and the

MECHANICAL ENGINEERING

Virginia Evans Jenny Dooley Joshua Kern

Scope and Sequence

Unit	Торіс	Reading context	Vocabulary	Function
1	The Mechanical Engineer	Article	assess, broad, design, hardware, improve, manufacture, mechanical engineer, power transmission, specialize in, test	Describing experience
2	Bearings	Poster	axial, ball bearing, bearing, inner race, journal bearing, outer race, radial, rolling contact bearing, sleeve, straight roller bearing, tapered roller bearing, thrust roller bearing	Making a polite request
3	Couplings	Textbook Excerpt	align, beam coupling, coupling, flexible, input shaft, offset, output shaft, rigid, sleeve-style coupling, transmit	Making a suggestion
4	Gears	Encyclopedia Entry	bevel gear, gear, helical gear, mesh, pinion, rack, spur gear, tooth, worm, worm gear	Stating a preference
5	Drives	Advice Column	belt drive, chain drive, groove, link, sheave, slippage, synchronous rotation, timing belt, v-belt, wedge angle	Making an estimate
6	Hand Tools	Email	ball peen hammer, box wrench, calipers, hacksaw, Phillips screwdriver, pliers, sledge hammer, slotted screwdriver, socket wrench, vice	Reacting to good news
7	Machine Tools	Webpage	band saw, broach, CNC mill, drill press, gear shaper, honing machine, lathe, lead screw, machine tool, mill	Talking about necessity
8	Numbers and Basic Math	Poster	add, divide by, equal, hundred, minus, multiply by, over, plus, subtract, times	Making an apology
9	Measurements 1	Conversion Chart	foot, gram, imperial, kilogram, length, meter, metric, ounce, pound, weight	Asking for clarification
10	Measurements 2	Email	Celsius, convert, cubic centimeter, Fahrenheit, fluid ounce, gallon, liter, milliliter, temperature, volume	Checking for certainty
11	SI Units	Poster	base unit, cubic meter, derived unit, force, joule, kelvin, mass, newton, pascal, SI	Expressing confusion
12	Large Numbers	Email	cubed, exponent, hundredth, rounding error, scientific notation, significant figure, squared, tenth, thousandth, to the nth power, trailing zero	Giving a warning
13	Analyzing Quantities	Textbook Excerpt	decimal number, fraction, improper fraction, mixed number, out of, percent, point, quantity, reduce, whole number	Making a prediction
14	Tables and Graphs	Note	bar graph, column, legend, line graph, pie chart, row, scatter plot, table, x-axis, y-axis	Discussing progress
15	Simple Machines	Textbook Excerpt	axle, fulcrum, inclined plane, lever, leverage, load, pulley, simple machine, wedge, wheel	Providing an example

Table of Contents

Unit 1 – The Mechanical Engineer
Unit 2 – Bearings
Unit 3 – Couplings
Unit 4 – Gears
Unit 5 – Drives
Unit 6 – Hand Tools
Unit 7 – Machine Tools
Unit 8 – Numbers and Basic Math
Unit 9 – Measurements 1
Unit 10 – Measurements 2
Unit 11 – SI Units
Unit 12 – Large Numbers
Unit 13 – Analyzing Quantities
Unit 14 – Tables and Graphs
Unit 15 – Simple Machines
Glossary

MECHANICAL ENGINEERING

Virginia Evans Jenny Dooley Joshua Kern

Scope and Sequence

Unit	Торіс	Reading context	Vocabulary	Function
1	Electricity	Course Description	AC, ampere, charge, circuit, current, DC, electron, ohm, Ohm's Law, resistance, volt, voltage, watt	Correcting yourself
2	Basic Physics	Textbook Excerpt	classical mechanics, energy, gravity, matter, motion, Newton's Laws, physics, quantum field theory, quantum mechanics, relativistic mechanics, speed of light	Correcting an error
3	Accounting	Email	closed system, consumption, extensive quantity, final, generation, initial, input, intensive quantity, open system, output, system, universal accounting equation	Confirming information
4	Rate Processes	Textbook Excerpt	diameter, driving force, flow rate, flux, inlet, outlet, pressure, rate, rate process, viscosity	Describing degree
5	Statistics	Memo	event, independent, intersection, median, mutually exclusive, outcome, population, probability, range, sample, sample space, statistics, union	Describing a lack of experience
6	Problem Solving	Employee Manual	analysis, approach, attack, brainstorm, iteration, iterative, problem identification, problem solving, procedure, redefine, solution, synthesis	Asking for help
7	Design Method	Email	assemble, constraint, construct, criteria, detailed design, feasibility study, identify, narrow down, preliminary design, revise, sketch, verify	Asking about progress
8	Patents	Webpage	claims, design patent, drawing, improvement, intellectual property, milestone, monopoly, ornamental, patent, patent duration, specification, technology, utility patent, witnessed	Making a recommendation
9	The Scientific Method	Abstract	conclusion, control group, evaluate, experiment, experimental group, hypothesis, independent variable, observation, problem, result, scientific method, testable	Talking about expectations
10	Materials	Webpage	alloy, ceramics, concrete, glass, lumber, materials science, metal, plastic, polymer, rebar, steel	Listing needs
11	Properties of Materials	Email	brittle, conductor, ductile, elastic limit, hardness, insulator, luster, malleable, natural, proportional limit, synthetic, tensile, yield strength	Asking for explanation
12	Force	Textbook Excerpt	coordinate system, cumulative, equilibrium, free-body diagram, magnitude, moment, particle, resultant, rigid body, vector	Expressing confusion
13	Fluid Motion	Course Description	aerodynamics, buoyancy, drag, fluid, gas, laminar flow, lift, liquid, thrust, turbulent flow, wind tunnel	Explaining differences
14	Tension and Compression	Report	compression, elastic behavior, elongation, fail, internal force, plastic behavior, shear, strain, stress, stretch, tension	Asking for other options
15	Career Options	Webpage	consultant, design engineer, engine, generator, inspect, management, manufacturing, professor, public safety, R&D, researcher, technical, tool	Stating a goal

Table of Contents

Unit 1 – Electricity
Unit 2 – Basic Physics6
Unit 3 – Accounting
Unit 4 – Rate Processes
Unit 5 – Statistics
Unit 6 – Problem Solving 14
Unit 7 – Design Method16
Unit 8 – Patents
Unit 9 – The Scientific Method
Unit 10 – Materials
Unit 11 – Properties of Materials
Unit 12 – Force
Unit 13 – Fluid Motion
Unit 14 – Tension and Compression
Unit 15 – Career Options
Glossary

MECHANICAL

Virginia Evans Jenny Dooley Joshua Kern

Scope and Sequence

Unit	Торіс	Reading context	Vocabulary	Function
1	Energy	Textbook Excerpt	chemical energy, conserve, convert, elastic potential energy, energy efficiency, energy quality, gravitational potential energy, kinetic energy, mechanical energy, power, thermal energy, work	Making comparisons
2	Heat and Thermodynamics	Webpage	BTU, burn, combustion, conduction, convection, heat, laws of thermodynamics, radiation, specific heat, thermal conductivity, thermodynamics	Correcting an error
3	The Combustion Engine	Encyclopedia Entry	combustion chamber, connecting rod, crankcase, crankshaft, cylinder, diesel, engine block, fuel injection pump, gasoline, glow plug, head, piston, piston ring, spark plug, sump, valve	Giving bad news
4	Two-Stroke Engines	Owner's Manual	burn out, compress, cycle, exhaust, fire, fuel, fuel-to-oil ratio, inlet, mix, revolution, two-stroke engine, two-stroke oil	Stressing a point
5	Four-Stroke Engines	Webpage	compression stroke, cylinder head, exhaust stroke, exhaust valve, four-stroke engine, head gasket, ignite, intake stroke, intake valve, power stroke, pressure	Troubleshooting problems
6	Rotational Motion	Textbook Excerpt	angle θ , angular velocity, arc length, center of rotation, degree, pivot point, radian, radius, revolution, rotational motion, RPM, RPS	Asking about benefits
7	Speed and Torque	Textbook Excerpt	frictional loss, gearset, grind, input torque, output torque, pitch, pitch circle, pitch radius, shift fork, slip, speed, torque, torque ratio, velocity ratio	Expressing concern
8	Geartrains	Webpage	balanced geartrain, carrier, compound geartrain, direction, idler gear, mesh point, planet gear, planetary geartrain, ring gear, serial, simple geartrain, spider, sun gear	Estimating time
9	CAD	Email	2-D, 3-D, B-rep, CAD, CSG, drafting, exploded view, IGES, manifold model, model, non-manifold model, PDES, photorealistic rendering, technical drawing	Approving a request
10	Product Lifecycle Management	Article	bottom-up design, concurrent engineering, design strategy, lifecycle assessment, manufacturing process management, material intensiveness, material life extension, material selection, packaging, planned obsolescence, product data management, product lifecycle extension, product management, systems engineering, top-down design	Stating an opinion
11	Robotics	Résumé	actuator, automation, dexterity, enabling device, end-effector, flow line, hydraulic, joint, manipulator, payload, pendant, pneumatic, robotics, serial robot, work envelope	Describing an experience
12	Structural Analysis	Course Syllabus	arch, beam, catenary, column, elasticity theory, element, finite element method, mechanics of materials, nonbuilding structure, plate, shell, structural analysis, structural load, support	
13	Failure Theory 1	Textbook Excerpt	brittle failure, buckle, corrosion, creep, deform, ductile failure, failure analysis, failure rate, failure theory, fatigue, fracture, macroscopic failure, metallurgical failure analysis, microscopic failure, thermal shock, yield	Describing unexpected results
14	Failure Theory 2	Webpage	crash test, DT, extensometer, force deflection, hardness test, materials testing machine, metallographic test, NDT, NFF, stress test, stress-strain curve, weld verification	Scheduling an appointment
15	Future of Mechanical Engineering	Article	artificial organ, biomechanics, BioMEMS, carbon fiber, composite, FSW, lab-on-a-chip, mechanosynthesis, mechatronics, MEMS, nanotechnology, prosthetic, rivet, rigidity	Asking for more information

Table of Contents

Unit 1 – Energy
Unit 2 – Heat and Thermodynamics
Unit 3 – The Combustion Engine
Unit 4 – Two-Stroke Engines
Unit 5 – Four-Stroke Engines
Unit 6 – Rotational Motion 14
Unit 7 – Speed and Torque
Unit 8 – Geartrains
Unit 9 – CAD
Unit 10 – Product Lifecycle Management
Unit 11 – Robotics
Unit 12 – Structural Analysis
Unit 13 – Failure Theory 1
Unit 14 – Failure Theory 2
Unit 15 – Future of Mechanical Engineering
Glossary

The Mechanical Engineer

mechanical engineer

asses

ower transmission

Get ready!

Before you read the passage, talk about these questions.

- 1 What are some responsibilities of a mechanical engineer?
- 2 What qualifications does a mechanical engineer need?

design

hardware

Do you want to become a mechanical engineer? Mechanical engineers design and build machines. They also assess the quality of existing machines. They adjust and improve the designs as needed. Sometimes mechanical engineers even invent new types of hardware. A qualified mechanical engineer has an engineering degree. Mechanical engineering is a very broad discipline. Most mechanical engineers specialize in a particular field. Areas of specialization include robotics, thermodynamics, and fluid mechanics.

Students of mechanical engineering study physics and kinematics. Concepts like friction and **power transmission** are essential. Students learn how to **manufacture** machines and components. They also learn how to **test** machines effectively.

Vocabulary

ngineering:

3 Match the words or phrases (1-7) with the definitions (A-G).

- **1** ____ test
- 5 ___ manufacture
 - 6 ___ power transmission
 - 7 ___ mechanical engineer
- 4 ___ hardware

2 ___ broad

3 ___ assess

- A the transfer of energy from one place to another to perform work
- **B** a person who studies, builds, and works with machines
- C machinery or mechanical components
- **D** to observe a machine's operations in order to determine it's functionality
- E to build something in a factory
- F involving a wide variety of topics or disciplines
- G to study and evaluate something

Reading

2 Read the article. Then, complete the table.

Type of Gear	Features
Responsibilities	1
Qualifications	2
3	physics, kinematics, manufacturing, machine testing

4 Read the sentences and choose the correct words or phrases.

- 1 Mechanical engineers sometimes **specialize in/assess** a particular sub-field.
- 2 The design doesn't work, so the engineers need to **improve/manufacture** it.
- **3** The client asked the engineer to **test/design** a nearly silent engine.

5 Solution Listen and read the article again. Why do mechanical engineers need college degrees?

Listening

6 Solution Listen to a conversation between an engineer and an interviewer. Mark the following statements as true (T) or false (F).

- 1 ___ The company is looking for someone to design new engines.
- **2** ___ The man's experience includes assessing older engine models.
- **3** ____ The woman offers the man the position.

Solution Complete The conversation.

Engineer:	Hi, I'm lan Moore. I'm here for an 1		
Interviewer:	It's nice to meet you, lan. Tell me about your work experience.		
Engineer:	Well, I 2 Osterbell Incorporated for twelve years.		
Interviewer:	What were your 3 ?		
Engineer:	I assessed old engine models. Then I made suggestions to 4 them.		
Interviewer:	Did you 5 any engines?		
Engineer:	Not on my own. I designed new parts for older models.		
Interviewer:	If we hire you, you'll design 6 as well.		

Speaking

8 With a partner, act out the roles below based on Task 7. Then, switch roles.

USE LANGUAGE SUCH AS:

Tell me about ... I worked for ...

What were your ...?

Student A: You are an engineer. Talk to Student B about:

- a job you are applying for
- your job experience
- your duties at your previous job

Student B: You are an interviewer. Talk to Student A about his or her job qualifications.

Writing

Use the article and the conversation from Task 8 to fill out the engineer's job application.

Vennotec Commercial & Industrial Vehicles

Job Application

- What position are you applying for?
- What is your educational background?
- What were your duties at your previous job?

Energy

Get ready!

elastic

notential er

Before you read the passage, talk about these questions.

1 What are some different types of energy?

chanical energy

thermal energy

2 What is potential energy?

Energy 9.5

kinetic energy

Mechanical engineers deal with many forms of energy. They are primarily concerned with mechanical energy. Engineers harness mechanical energy in order to perform useful work. Understanding energy quality is an essential skill for engineers.

To perform work, mechanical systems must convert energy from one form of mechanical energy to another. For instance, kinetic energy may transform into chemical or electrical energy. Additionally, two types of potential energy are especially important. Gravitational potential energy is released when gravity acts on an object. Elastic potential energy is stored in an object that is stretched or bent. Energy is released as the object springs back into shape. Both of these potential energies are converted into kinetic energy during release.

In addition to mechanical energy, mechanical engineers deal with chemical energy. Chemical energy is released as chemical bonds form and break. Many machines also release thermal energy through the consumption of fossil fuels.

Energy efficiency is a growing concern among both engineers and consumers. Whenever energy is converted, a certain amount of power is always lost. This is unavoidable. However, engineers are always seeking ways to **conserve** as much energy as possible.

Vocabulary

3 Match the words or phrases (1-8) with the definitions (A-H).

1 work

۲

- 5 ____ energy quality
- 2 ___ power

- 6 ____ energy efficiency
- **3** ____ kinetic energy
- 4 ___ elastic potential energy
- 7 ____ thermal energy 8 ___ gravitational
 - potential energy

 \odot

- A a type of energy that is active or moving
- **B** the transfer of energy, calculated as force times distance
- C the energy stored in an object that is stretched or bent
- **D** the rate at which energy is used or transferred
- E the energy stored in an object relative to its elevation
- F the ratio between the energy used and its useful output
- **G** a type of energy released by the movement of subatomic particles
- **H** the relative ability of a unit of energy to perform work

Reading

2 Read the textbook excerpt. Then, mark the following statements as true (T) or false (F).

gravitational potential energy

- Potential energy is a type of 1 mechanical energy.
- Gravitational potential energy is released as thermal energy.
- Engineers must eliminate the 3 loss of power during energy release.

- 4 Read the sentence pairs. Choose which word or phrase best fits each blank.
 - 1 mechanical energy / chemical energy
 - A Batteries use stored

power devices.

B _____ is a combination of kinetic and potential energy.

to

- 2 conserve / convert
 - A There isn't much fuel left, so we need to ______ it.
 - **B** A dam is used to

_____kinetic energy to electrical energy.

5 Solution Listen and read the textbook excerpt again. How is elastic potential energy released?

Listening

- 6 Solution Listen to a conversation between a student and an instructor. Choose the correct answers.
 - 1 What is the conversation about?
 - A the woman's performance on an assignment about energy
 - **B** an oral quiz about different types of potential energy
 - C clarification of a lecture on mechanical energy
 - **D** an upcoming exam about energy conversion
 - 2 What is true about thermal energy?
 - A It is the result of actively moving particles.
 - **B** It can be converted into other types of energy.
 - **C** It is included when calculating chemical energy.
 - **D** It can be stored and released later.

7 🚱 Listen again and complete the conversation.

Student:	Instructor Matthews? I don't think I quite understand what 1 is.		
Instructor:	Okay. Well, mechanical energy is the combined kinetic and potential energy in a mechanical system.		
Student:	Hmm. I think I'm confused about the difference between 2 and potential energy.		
Instructor:	Think of it like this: Potential energy is energy that could be released in the future. But kinetic energy is 3 right now.		
Student:	That's what you said in class. But I don't get how that works.		
Instructor:	Well, picture a rubber band. When you stretch it, it has 4 When you let go of it, that potential energy becomes kinetic energy.		
Student:	Okay, I get it now. But what about thermal energy? Does that 5 mechanical energy?		
Instructor:	6 is a kind of kinetic energy. So yes, it does.		

Speaking

8 With a partner, act out the roles below based on Task 7. Then, switch roles.

USE LANGUAGE SUCH AS:

I don't think I understand ... / Think of it like this ... Does that count ...?

Student A: You are a student. Talk to Student B about:

- an energy concept you do not understand
- an example of that type of energy
- the characteristics of that type of energy

Student B: You are an instructor. Talk to Student A about an energy concept that he or she doesn't understand.

Writing

۲

Use the textbook excerpt and the conversation from Task 8 to write a report on energy. Include: two types of energy, the differences between them, and why they are important in engineering.

Glossary

ring gear [N-COUNT-U8] A ring gear is a fixed internal gear that encircles a planetary geartrain.

rivet [N-COUNT-U15] A **rivet** is a permanent metal fastening device that works by deforming and expanding during installation, preventing removal.

robotics [N-UNCOUNT-U11] Robotics is the science of designing and manufacturing robots.

rotational motion [N-UNCOUNT-U6] Rotational motion is the movement of an object in a circle around its center.

- **RPM** [N-COUNT-U6] **RPM** (revolutions per minute) are the number of complete rotations around an axis that something can complete in one minute.
- **RPS** [N-COUNT-U6] **RPS** (revolutions per second) are the number of complete rotations around an axis that something can complete in one second.
- serial [ADJ-U8] If something is serial, it is part of a series or collection.

serial robot [N-COUNT-U11] A serial robot is a robot that consists of a linear series of parts connected by joints.

shell [N-COUNT-U12] A shell is a strong, curved element that is used in construction.

shift fork [N-COUNT-U7] A shift fork is a mechanism that slides a gear along a splined shaft.

- simple geartrain [N-COUNT-U8] A simple geartrain is a chain of three or more gears in which each shaft bears only one gear.
- slip [V-I-U7] To slip is to move accidentally from a location.
- spark plug [N-COUNT-U3] A spark plug is a device that creates an electrical spark to ignite fuel.
- specific heat [N-UNCOUNT-U2] Specific heat is the amount of heat required to raise the temperature of a particular material.
- speed [N-UNCOUNT-U7] Speed is the rate at which something moves.
- spider [N-COUNT-U8] A spider is a carrier that is specially designed to accommodate multiple planet gears.
- stress test [N-COUNT-U14] A stress test is a destructive test that determines a material's strength under different types of stress.
- stress-strain curve [N-COUNT-U14] A stress-strain curve is the relationship between the amount of force applied to a material and its corresponding deformation.
- structural analysis [N-UNCOUNT-U12] Structural analysis is the study and assessment of structures and their ability to bear loads.
- structural load [N-COUNT-U12] A structural load is the amount of weight or pressure that a structure supports.

sump [N-COUNT-U3] A sump is a reservoir that collects oil at the bottom of an engine.

- sun gear [N-COUNT-U8] A sun gear is a stationary central gear in a planetary geartrain that transfers rotation to the rest of the machine.
- support [V-T-U12] To support something is to bear its weight or prevent it from collapsing.
- systems engineering [N-UNCOUNT-U10] Systems engineering is an area of product lifecycle management that focuses on meeting consumer needs and requirements and coordinating relevant disciplines in a project.
- technical drawing [N-COUNT-U9] A technical drawing is a precise, realistic drawing of something.
- thermal conductivity [N-UNCOUNT-U2] Thermal conductivity is the relative ability of a material to transfer heat.
- **thermal energy** [N-UNCOUNT-U1] **Thermal energy** is energy that is released by the movement or vibration of a material's atoms or molecules.
- **thermal shock** [N-UNCOUNT-U13] **Thermal shock** is a common cause of material failure that occurs when an object is subjected to sudden changes in temperature.
- thermodynamics [N-UNCOUNT-U2] Thermodynamics is the science of heat energy and its application for performing work.

Career Paths: Mechanical Engineering is a new educational resource for mechanical engineering professionals who want to improve their English communication in a work environment. Incorporating career-specific vocabulary and contexts, each unit offers stepby-step instruction that immerses students in the four key language components: reading, listening, speaking, and writing. *Career Paths: Mechanical Engineering* addresses topics including materials, simple machines, measurements, basic physics, and career options.

MECHANICAL

ENGINEERING

The series is organized into three levels of difficulty and offers a minimum of 400 vocabulary terms and phrases. Every unit includes a test of reading comprehension, vocabulary, and listening skills, and leads students through written and oral production.

Included Features:

CAREER

DATES

- · A variety of realistic reading passages
- Career-specific dialogues
- 45 reading and listening comprehension checks
- Over 400 vocabulary terms and phrases
- Guided speaking and writing exercises
- · Complete glossary of terms and phrases

The Teacher's Guide contains detailed lesson plans, a full answer key and audio scripts.

The audio CDs contain all recorded material.

